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Abstract. The size effects on an exciton in a nano-ring are investigated theoretically by using
an effective-mass Hamiltonian which can be separated into terms in centre-of-mass and relative
coordinates. The binding energy and oscillator strength of the ground state are calculated for two
different ring radii as functions of the ring width. The resulting linear optical susceptibility of the
low-lying exciton states is also discussed.

Recent progress in nanofabrication techniques has made it possible to construct self-assembled
InGaAs nano-rings [1–5]. Quite unlike the previously fabricated sub-micron GaAs quantum
rings [6], the nano-rings now achieved are so small (with characteristic inner/outer radius
of 20/100 nm and 2–3 nm in height) that the electrons and holes can propagate coherently
(non-diffusively) throughout the ring. In view of this, nano-rings can be viewed as promising
candidates for application in microelectronics as well as conventional quantum dots. Moreover,
the additional non-simply connected geometry of nano-rings is of inherent interest at the
moment [7–11].

While the conventional quantum dots have been investigated theoretically and exp-
erimentally in depth [12–16], nano-rings with strong quantum effects have only been treated
recently [9, 11, 17–23]. In particular, theoretical results related to the quantum confinement
effects on exciton states in nano-rings are very rare. Only recently did Song and Ulloa report
numerical calculations of the binding energy and electron–hole separation of the exciton in
an external magnetic field [11]. They claim that the excitons in nano-rings behave to a great
extent as those in quantum dots of similar dimensions.

In this paper, we would like to investigate the size effects on excitons in nano-rings by
introducing a simplified confining potential, which is applicable to the realistic self-assembled
semiconducting InGaAs nano-rings achieved to date [2, 4, 5]. To explore the role of different
confinements, we express the model Hamiltonian in terms of the centre-of-mass and relative
coordinates and calculate binding energies, oscillator strengths and their dependence on the
nano-ring width, as well as the linear optical susceptibility which would be measurable in
photoluminescence experiments, for example.

Our model is a two-dimensional exciton in a nano-ring, simulating recent experimental
nano-ring structures [2, 4, 5]. The nano-ring is described by an electron–hole pair (i = e, h)
with an effective band-edge massm∗

i moving in an x–y plane, and a ring-like confining potential
is introduced as

U(�ri ) = 1

2R2
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m∗
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2
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whereR0 is the radius of the ring andωi is the characteristic frequency of the radial confinement,
giving a characteristic ring width

W ≈ 2

√
h̄

2m∗
i ωi

for each particle. The resulting model Hamiltonian is thus given by

H =
∑
i=e,h

[ �p2
i

2m∗
i

+ U(�ri )
]

− e2

4πε0εr |�re − �rh| (1)

where �ri = (xi, yi) and �pi = −ih̄ �∇i denote the position vector and momentum operator, ε0 is
the vacuum permittivity and εr is the static dielectric constant of the host semiconductor. It
should be pointed out that the present ring-like confining potential can be rewritten as

U(�ri ) = 1

2
m∗
i ω

2
i (ri − R0)

2 (ri + R0)
2

R2
0

.

If one replaces the operator ri in the factor (ri + R0)
2/R2

0 by its mean value 〈ri〉 = R0, the
confining potential returns to the widely used parabolic form [2, 11, 20, 22]. On the other
hand, for narrow rings (with steep confinement) our confining potential gives a more realistic
description than does the parabolic form. In the latter, as pointed out by Song and Ulloa [11],
the associated wavefunctions fail in a real system because the increased confinement may push
the levels into the anharmonic part of the potential and even produce deconfinement of carriers.
Figures 1(a) and 1(b) display the shape of the ring potential with two different radii: 10 and
30 nm. The solid and dashed lines correspond to the ring widths W = 16.7 and 9.6 nm,
respectively.

0 20 40 60

30
60
90

0
30
60
90

120

(b)

r (nm)

 

 

 

(a)

U
(r

) 
(m

eV
)

 

 

 

Figure 1. The confining potential U(�r) = [m∗
eω

2
e/(2R

2
0)](�r2 − R2

0)
2 with different ring radii R0:

10 nm (a) and 30 nm (b). The solid and dashed lines correspond to the ring widths W = 16.7 and
9.6 nm, respectively.

In terms of the relative coordinate �r = �re − �rh and centre-of-mass coordinate

�R = m∗
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the model Hamiltonian is divided into
H = Hcm( �R) + Hrel(�r) + Hmix( �R, �r)

Hcm =
�P 2
cm

2M
+
Mω2

cm

2R2
0

( �R2 − R2
0)

2

Hrel = �p2
rel

2µ
+
µ

2

(m∗3
h ω

2
e + m∗3

e ω
2
h)

M3R2
0

r4 − µω2
relr

2 − e2

4πε0εrr

Hmix = −2µ(ω2
e − ω2

h)(
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�R3 · �r
R2

0

) +
µω2

rel

R2
0

[
R2r2 + 2( �R · �r)2
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+ 2µ
(m∗2

h ω
2
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e ω
2
h)

M2R2
0

�R · �r3

(2)

where µ = m∗
em

∗
h/M is the electron–hole reduced mass and M = m∗

e + m∗
h is the total mass.

We have also introduced a centre-of-mass frequency

ωcm =
√
m∗

eω
2
e + m∗

hω
2
h

M

and a relative frequency

ωrel =
√
m∗

hω
2
e + m∗

eω
2
h

M
.

The main purpose of the above change of variable is to use the solutions of Hcm and Hrel

as a basis for solving the full Hamiltonian. Those solutions, i.e. those labelled as ψcm
λ ( �R)

and ψrel
λ′ (�r), can be solved by the series expansion method [24, 25]. Here, λ = {ncm, lcm}

and λ′ = {nrel, lrel} represent the quantum number pair of the radial quantum number n and
orbital angular momentum quantum number l. Another advantage coming from centre-of-
mass and relative coordinate separation is that we can include the negative Coulomb interaction
−e2/(4πε0εrr) in Hrel , thus avoiding the well-known poor convergence of the parabolic basis
when the characteristic system scale is beyond the effective Bohr radius [11, 26]. We now
search for the wavefunctions of the exciton in the form

� =
∑
λ,λ′

Aλ,λ′ψcm
λ ( �R)ψrel

λ′ (�r). (3)

Due to the cylindrical symmetry of the problem, the exciton wavefunctions can be labelled by
the total orbital angular momentum L = lcm + lrel . To obtain the coefficients Aλ,λ′ , the total
Hamiltonian is diagonalized in the space spanned by the product statesψcm

λ ( �R)ψrel
λ′ (�r). In the

present calculations, we first solve the single-particle problem of centre-of-mass and relative
Hamiltonians Hcm and Hrel , keep several hundreds of the single-particle states and then pick
up the low-lying energy levels to construct several thousands of product states. Note that our
numerical diagonalization scheme is very efficient and essentially exact in the sense that the
accuracy can be improved as required by increasing the total number of selected product states.

Once the coefficients Aλ,λ′ are obtained, one can calculate directly the measurable
properties, such as the linear optical susceptibility of the nano-rings, whose imaginary part
is related to the absorption intensity measured by optical emission experiments. In theory,
the linear optical susceptibility is proportional to the dipole matrix elements connecting one
electron–hole pair state m and the vacuum state, which in turn is proportional to the oscillator
strengths Fm. In the dipole approximation, it is given by [12, 26, 27]

Fm =
∣∣∣∣
∫ ∫

d �R d�r �( �R, �r)δ(�r)
∣∣∣∣
2

=
∣∣∣∣∣
∑
λ,λ′

Aλ,λ′ψrel
λ′ (0)

∫
d �R ψcm

λ ( �R)

∣∣∣∣∣
2

(4)
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where the factor ψrel
λ′ (0) and the integral over �R ensure that only the excitons with L = 0

are created by absorbing photons. Therefore, the frequency dependence of the linear optical
susceptibility χ(ω) can be expressed as [12, 26, 27]

χ(ω) ∝
∑
m

Fm

h̄ω − Eg − Em − i#
(5)

where Eg and Em are the respective semiconducting band gap of InGaAs and energy levels of
the exciton, and # has been introduced as a phenomenological broadening parameter.

In what follows we constrain ourselves to the subspace L = 0, the most interesting
case, throughout the calculations. As an interesting example of a typical system, we have
taken the parameters m∗

e = 0.067me, the effective mass of the heavy hole m∗
h = 0.335me

(me is the bare mass of a single electron) and εr = 12.4, which are appropriate to InGaAs
material [2, 20, 22]. The electron and hole are considered to be confined under the same
potential barrier, i.e. m∗

eω
2
e = m∗

hω
2
h. If we choose the characteristic energy and length

scale to be the effective Rydberg R∗ = m∗
ee

4/(2h̄2(4πε0εr)
2) and the effective Bohr radius

a∗
B = 4πε0εrh̄

2/(µe2), we find that R∗ = 5.0 meV and a∗
B = 11.8 nm. In the following, we

perform the calculations for two ring radii: 10 and 30 nm. The ring width can be tuned by the
confining potential; e.g. W = 10 nm corresponds to h̄ωe = 15 meV.

Figure 2 displays the exciton binding energies obtained for different ring radii: R0 = 10 nm
and 30 nm, as functions of the nano-ring width. For comparison, the binding energy of a
quantum dot with a parabolic potential U(�r) = 1

2m
∗ω2

0r
2 is also presented, as a dashed line

(for quantum dots, 2W = 2
√{h̄/(m∗ω0)} is the diameter). Notice that Eb = E0

e−h − Eex
grnd ,

where the first term refers to just the confinement ground state of the electron and hole, ignoring
the Coulomb interaction. It is obvious that for relatively large widths, the exciton binding
energy for small-radius nano-rings is larger than for the large-radius ones, as expected. This
difference is a reflection of the strong quantum confinement in small nano-rings. As the ring
width decreases, the binding energy for nano-rings with a large radius increases rapidly. For
widths less than ≈11 nm, however, the two solid curves cross and their sequence is reversed.
This crossover is caused by the strong anisotropic confinement in nano-rings: for smaller ring
widths, the resulting exciton wavefunctions are increasingly elongated along the ring, and thus
the exciton is confined in a quasi-one-dimensional system with a characteristic size ≈W . On

10 20 30 40 50
20

25

30

R
0
=10nm

30nm

B
in

di
ng

 E
ne

rg
y 

(m
eV

)

W (nm)

 

 

Figure 2. The exciton binding energies for the nano-ring as functions of the ring width for two
different ring radii R0 = 10 and 30 nm. For comparison, the result for a parabolic quantum dot is
also displayed, as a dashed line.
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the other hand, by decreasing the ring radius with a fixed potential strength (or a fixed ring
width), nano-rings can be tuned from quasi-one-dimensional to two-dimensional systems. In
other words, nano-rings will behave like quantum dots when their radii are comparable to the
widths (see figure 1(a)). One can thus expect that with a fixed sufficiently small ring width,
the effective size of the exciton might be smaller for a larger ring radius, and in turn cause
enhancement of its binding energy.

Another feature shown in figure 2 is the similarity of the curves for the large-radius nano-
ring and the quantum dot. This is due to the confinement areas of the two systems being
comparable; as pointed out by Song and Ulloa, the excitons in nano-rings behave to a great
extent as those in quantum dots of similar dimensions [11]. It is also important to emphasize
that for a nano-ring with a large ring radius and ring width, the binding energy approaches
approximately the exact result for a free two-dimensional exciton, i.e. Eb = 4R∗ = 20 meV.

Figure 3 shows the exciton oscillator strengths versus the ring width, for two ring radii
(two solid lines) and a quantum dot with a parabolic potential (the dashed line). It is readily
seen that the oscillator strength of the large-radius nano-ring is much larger than that of the
small-radius nano-ring for the whole range of widths shown, which is also an indication of
the strong quantum confinement in small nano-rings, as mentioned above. For a larger ring
width, the oscillator strengths of the two nano-rings clearly increase, but not as fast as that of
the quantum dot.
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Figure 3. The exciton oscillator strengths versus the ring width, for two ring radii (two solid lines)
and a quantum dot with a parabolic potential (the dashed line).

To support the experimental relevance of our results, we have also calculated the linear
optical susceptibility of nano-rings. Figures 4(a) and 4(b) show typical results for different
values of the ring width and two ring radii, where a broadening parameter # = 0.5 meV is
used. Those curves represent all the possible transitions of excitonic states which would be
measurable via photoluminescence excitation (PLE) measurements. In contrast to the case
for conventional quantum dots, in which the low-lying exciton-state transitions have the same
amplitudes and are nearly equally distributed (a reflection of excitations of the centre-of-
mass degree of freedom), the low-lying transitions of nano-rings show a rapid damping with
frequency and their positions are not periodic. This difference is a refection of the anisotropic
confinement of nano-rings: since the exciton is confined in a quasi-one-dimensional system,
its centre-of-mass degree of freedom is greatly suppressed and its relative motion becomes
dominant; this results in the destruction of the regular patterns observed in quantum dots.
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Figure 4. The imaginary part of the linear optical susceptibility as a function of frequency ω for
different values of the ring width and two different ring radii R0 = 10 nm (a) and R0 = 30 nm (b).
In each panel, from bottom to top, the ring widths are 10, 15, 20 and 25 nm. For clarity, the
semiconducting band gap Eg is set to zero.

Note that this behaviour is indeed observed in a recent experiment [3]. Another noticeable
feature in figures 4(a) and 4(b) is that those transition peaks are strongly red-shifted as the ring
width increases, indicating that there is less confinement for larger ring widths.

In conclusion, we have shown the strong quantum confinement effects on excitons in a
nano-ring on the basis of a simple model Hamiltonian. By numerical diagonalization, we
calculate the binding energies, oscillator strengths and their dependences on the nano-ring
width, as well as the linear optical susceptibility. The anisotropic confinement in nano-rings
is clearly demonstrated; this could be confirmed by future measurements of optical emission
on InGaAs nano-rings with tunable sizes.
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